出事的Slingsby T67C轻型飞机已被移至机场一角停放。 余瑞冬 摄
事发于当日约中午时分。一架正准备降落于巴顿维尔(Buttonville)机场的Slingsby T67C轻型飞机在降落时出现意外,最后在机场北侧的公路上迫降。
出事飞机的起落架已损坏。 余瑞冬 摄媒体公布的事发现场画面显示,飞机迫降后侧倾于路面。机头和左机翼明显着地。
当地警方一度需要关闭事发路段。警方表示,无人在事件中受伤。
出事飞机在当天下午被移回机场,出事路段交通恢复正常。记者看到,其机身与左机翼有明显损伤,并已失去前、左起落架。
警方初步调查显示,事故可能是因有人在飞机着陆时错过位置而导致。加拿大交通安全委员会已对此次事故展开调查。
出事机型是单引擎轻型飞机,一般用作教练机。
巴顿维尔机场是该地区一个以航空教学为主的机场,且位于生活区、商业区和地面交通干道附近。2022年4月,曾有一架小型飞机在该机场西北侧的高速公路旁,造成飞机严重受损,但机上人员无虞。
科研人员揭示基因转录“刹车”机制****** 中新网上海1月12日电 (记者 郑莹莹)记者从中国科学院分子植物科学卓越创新中心获悉,北京时间1月12日,中美科研团队合作在《自然》杂志上发表了一篇研究论文,该研究揭示了细菌RNA聚合酶如何识别“转录终止序列”从而终止转录的工作机制。 科研人员介绍,RNA聚合酶在执行基因转录时类似高速行驶的汽车,以大约每秒50个核苷酸的速度合成RNA,当RNA聚合酶转录至“终止序列”时,需要从高速延伸的状态“刹车”,停止转录并释放RNA。 细菌的“固有转录终止序列”是一段由大约30个至50个核苷酸碱基组成的序列。研究团队捕获了RNA聚合酶转录终止的一系列中间状态,解析了RNA聚合酶在上述转录终止中间状态的冷冻电镜三维结构。 研究发现,“转录终止序列”的多聚尿苷使RNA聚合酶“刹车”,将其固定在转录暂停状态,随后RNA发卡结构折叠进入RNA聚合酶内部,促使RNA从RNA聚合酶内部解离。 该研究回答了基因表达的基础科学问题,拓展了人们对于基因表达机制的理解。 这项研究具体由中国科学院分子植物科学卓越创新中心的张余研究团队和美国威斯康星大学麦迪逊分校(University of Wisconsin-Madison)的Robert Landick团队以及浙江大学的冯钰团队合作完成。中科院分子植物科学卓越创新中心的博士生尤琳琳(已毕业)为论文第一作者,该中心的张余研究员和威斯康星大学麦迪逊分校的Robert Landick教授以及浙江大学的冯钰研究员为共同通讯作者。(完) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |